FastLED 3.9.7
Loading...
Searching...
No Matches
simplex.cpp
Go to the documentation of this file.
1
3
4#define FASTLED_INTERNAL
5#include "FastLED.h"
6
7// This file implements simplex noise, which is an improved Perlin noise. This
8// implementation is a fixed-point version that avoids all uses of floating
9// point while still being compatible with the floating point version.
10
11// Original author: Stefan Gustavson, converted to Go by Lars Pensjö, converted
12// to fixed-point Go and then to C++ by Ayke van Laethem.
13// https://github.com/larspensjo/Go-simplex-noise/blob/master/simplexnoise/simplexnoise.go
14// https://github.com/aykevl/ledsgo/blob/master/noise.go
15//
16// The code in this file has been placed in the public domain. You can do
17// whatever you want with it. Attribution is appreciated but not required.
18
19// Notation:
20// Every fixed-point calculation has a line comment saying how many bits in the
21// given integer are used for the fractional part. For example:
22//
23// uint32_t n = a + b; // .12
24//
25// means the result of this operation has the floating point 12 bits from the
26// right. Specifically, there are 20 integer bits and 12 fractional bits. It
27// can be converted to a floating point using:
28//
29// double nf = (double)n / (1 << 12);
30
32
33#define P(x) FL_PGM_READ_BYTE_NEAR(p + (x))
34
35// Permutation table. This is just a random jumble of all numbers.
36// This needs to be exactly the same for all instances on all platforms,
37// so it's easiest to just keep it as static explicit data.
38FL_PROGMEM static uint8_t const p[] = {
39 151, 160, 137, 91, 90, 15,
40 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23,
41 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33,
42 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166,
43 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244,
44 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196,
45 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123,
46 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42,
47 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9,
48 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228,
49 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107,
50 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254,
51 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180,
52};
53
54// A lookup table to traverse the simplex around a given point in 4D.
55// Details can be found where this table is used, in the 4D noise method.
56// TODO: This should not be required, backport it from Bill's GLSL code!
57static uint8_t const simplex[64][4] = {
58 {0, 1, 2, 3}, {0, 1, 3, 2}, {0, 0, 0, 0}, {0, 2, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {1, 2, 3, 0},
59 {0, 2, 1, 3}, {0, 0, 0, 0}, {0, 3, 1, 2}, {0, 3, 2, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {1, 3, 2, 0},
60 {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0},
61 {1, 2, 0, 3}, {0, 0, 0, 0}, {1, 3, 0, 2}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {2, 3, 0, 1}, {2, 3, 1, 0},
62 {1, 0, 2, 3}, {1, 0, 3, 2}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {2, 0, 3, 1}, {0, 0, 0, 0}, {2, 1, 3, 0},
63 {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0},
64 {2, 0, 1, 3}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {3, 0, 1, 2}, {3, 0, 2, 1}, {0, 0, 0, 0}, {3, 1, 2, 0},
65 {2, 1, 0, 3}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {3, 1, 0, 2}, {0, 0, 0, 0}, {3, 2, 0, 1}, {3, 2, 1, 0},
66};
67
68// hash is 0..0xff, x is 0.12 fixed point
69// returns *.12 fixed-point value
70static int32_t grad(uint8_t hash, int32_t x) {
71 uint8_t h = hash & 15;
72 int32_t grad = 1 + (h&7); // Gradient value 1.0, 2.0, ..., 8.0
73 if ((h&8) != 0) {
74 grad = -grad; // Set a random sign for the gradient
75 }
76 return grad * x; // Multiply the gradient with the distance (integer * 0.12 = *.12)
77}
78
79static int32_t grad(uint8_t hash, int32_t x, int32_t y) {
80 uint8_t h = hash & 7; // Convert low 3 bits of hash code
81 int32_t u = h < 4 ? x : y; // into 8 simple gradient directions,
82 int32_t v = h < 4 ? y : x; // and compute the dot product with (x,y).
83 return ((h&1) != 0 ? -u : u) + ((h&2) != 0 ? -2*v : 2*v);
84}
85
86static int32_t grad(uint8_t hash, int32_t x, int32_t y, int32_t z) {
87 int32_t h = hash & 15; // Convert low 4 bits of hash code into 12 simple
88 int32_t u = h < 8 ? x : y; // gradient directions, and compute dot product.
89 int32_t v = h < 4 ? y : (h == 12 || h == 14 ? x : z); // Fix repeats at h = 12 to 15
90 return ((h&1) != 0 ? -u : u) + ((h&2) != 0 ? -v : v);
91}
92
93static int32_t grad(uint8_t hash, int32_t x, int32_t y, int32_t z, int32_t t) {
94 uint8_t h = hash & 31; // Convert low 5 bits of hash code into 32 simple
95 int32_t u = h < 24 ? x : y; // gradient directions, and compute dot product.
96 int32_t v = h < 16 ? y : z;
97 int32_t w = h < 8 ? z : t;
98 return ((h&1) != 0 ? -u : u) + ((h&2) != 0 ? -v : v) + ((h&4) != 0 ? -w : w);
99}
100
101// 1D simplex noise.
102uint16_t snoise16(uint32_t x) {
103 uint32_t i0 = x >> 12;
104 uint32_t i1 = i0 + 1;
105 int32_t x0 = x & 0xfff; // .12
106 int32_t x1 = x0 - 0x1000; // .12
107
108 int32_t t0 = 0x8000 - ((x0*x0)>>9); // .15
109 t0 = (t0 * t0) >> 15; // .15
110 t0 = (t0 * t0) >> 15; // .15
111 int32_t n0 = (t0 * grad(P(i0&0xff), x0)) >> 12; // .15 * .12 = .15
112
113 int32_t t1 = 0x8000 - ((x1*x1)>>9); // .15
114 t1 = (t1 * t1) >> 15; // .15
115 t1 = (t1 * t1) >> 15; // .15
116 int32_t n1 = (t1 * grad(P(i1&0xff), x1)) >> 12; // .15 * .12 = .15
117
118 int32_t n = n0 + n1; // .15
119 n += 2503; // .15: fix offset, adjust to +0.03
120 n = (n * 26694) >> 16; // .15: fix scale to fit in [-1,1]
121 return uint16_t(n) + 0x8000;
122}
123
124// 2D simplex noise.
125uint16_t snoise16(uint32_t x, uint32_t y) {
126 const uint64_t F2 = 1572067135; // .32: F2 = 0.5*(sqrt(3.0)-1.0)
127 const uint64_t G2 = 907633384; // .32: G2 = (3.0-Math.sqrt(3.0))/6.0
128
129 // Skew the input space to determine which simplex cell we're in
130 uint32_t s = (((uint64_t)x + (uint64_t)y) * F2) >> 32; // (.12 + .12) * .32 = .12: Hairy factor for 2D
131 uint32_t i = ((x>>1) + (s>>1)) >> 11; // .0
132 uint32_t j = ((y>>1) + (s>>1)) >> 11; // .0
133
134 uint64_t t = ((uint64_t)i + (uint64_t)j) * G2; // .32
135 uint64_t X0 = ((uint64_t)i<<32) - t; // .32: Unskew the cell origin back to (x,y) space
136 uint64_t Y0 = ((uint64_t)j<<32) - t; // .32
137 int32_t x0 = ((uint64_t)x<<2) - (X0>>18); // .14: The x,y distances from the cell origin
138 int32_t y0 = ((uint64_t)y<<2) - (Y0>>18); // .14
139
140 // For the 2D case, the simplex shape is an equilateral triangle.
141 // Determine which simplex we are in.
142 uint32_t i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
143 if (x0 > y0) {
144 i1 = 1;
145 j1 = 0; // lower triangle, XY order: (0,0)->(1,0)->(1,1)
146 } else {
147 i1 = 0;
148 j1 = 1;
149 } // upper triangle, YX order: (0,0)->(0,1)->(1,1)
150
151 // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
152 // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
153 // c = (3-sqrt(3))/6
154
155 int32_t x1 = x0 - ((int32_t)i1<<14) + (int32_t)(G2>>18); // .14: Offsets for middle corner in (x,y) unskewed coords
156 int32_t y1 = y0 - ((int32_t)j1<<14) + (int32_t)(G2>>18); // .14
157 int32_t x2 = x0 - (1 << 14) + ((int32_t)(2*G2)>>18); // .14: Offsets for last corner in (x,y) unskewed coords
158 int32_t y2 = y0 - (1 << 14) + ((int32_t)(2*G2)>>18); // .14
159
160 int32_t n0 = 0, n1 = 0, n2 = 0; // Noise contributions from the three corners
161
162 // Calculate the contribution from the three corners
163 int32_t t0 = (((int32_t)1 << 27) - x0*x0 - y0*y0) >> 12; // .16
164 if (t0 > 0) {
165 t0 = (t0 * t0) >> 16; // .16
166 t0 = (t0 * t0) >> 16; // .16
167 n0 = t0 * grad(P((i+(uint32_t)(P(j&0xff)))&0xff), x0, y0); // .16 * .14 = .30
168 }
169
170 int32_t t1 = (((int32_t)1 << 27) - x1*x1 - y1*y1) >> 12; // .16
171 if (t1 > 0) {
172 t1 = (t1 * t1) >> 16; // .16
173 t1 = (t1 * t1) >> 16; // .16
174 n1 = t1 * grad(P((i+i1+(uint32_t)(P((j+j1)&0xff)))&0xff), x1, y1); // .16 * .14 = .30
175 }
176
177 int32_t t2 = (((int32_t)1 << 27) - x2*x2 - y2*y2) >> 12; // .16
178 if (t2 > 0) {
179 t2 = (t2 * t2) >> 16; // .16
180 t2 = (t2 * t2) >> 16; // .16
181 n2 = t2 * grad(P((i+1+(uint32_t)(P((j+1)&0xff)))&0xff), x2, y2); // .16 * .14 = .30
182 }
183
184 // Add contributions from each corner to get the final noise value.
185 // The result is scaled to return values in the interval [-1,1].
186 int32_t n = n0 + n1 + n2; // .30
187 n = ((n >> 8) * 23163) >> 16; // fix scale to fit exactly in an int16
188 return (uint16_t)n + 0x8000;
189}
190
191// 3D simplex noise.
192uint16_t snoise16(uint32_t x, uint32_t y, uint32_t z) {
193 // Simple skewing factors for the 3D case
194 const uint64_t F3 = 1431655764; // .32: 0.333333333
195 const uint64_t G3 = 715827884; // .32: 0.166666667
196
197 // Skew the input space to determine which simplex cell we're in
198 uint32_t s = (((uint64_t)x + (uint64_t)y + (uint64_t)z) * F3) >> 32; // .12 + .32 = .12: Very nice and simple skew factor for 3D
199 uint32_t i = ((x>>1) + (s>>1)) >> 11; // .0
200 uint32_t j = ((y>>1) + (s>>1)) >> 11; // .0
201 uint32_t k = ((z>>1) + (s>>1)) >> 11; // .0
202
203 uint64_t t = ((uint64_t)i + (uint64_t)j + (uint64_t)k) * G3; // .32
204 uint64_t X0 = ((uint64_t)i<<32) - t; // .32: Unskew the cell origin back to (x,y) space
205 uint64_t Y0 = ((uint64_t)j<<32) - t; // .32
206 uint64_t Z0 = ((uint64_t)k<<32) - t; // .32
207 int32_t x0 = ((uint64_t)x<<2) - (X0>>18); // .14: The x,y distances from the cell origin
208 int32_t y0 = ((uint64_t)y<<2) - (Y0>>18); // .14
209 int32_t z0 = ((uint64_t)z<<2) - (Z0>>18); // .14
210
211 // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
212 // Determine which simplex we are in.
213 uint32_t i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
214 uint32_t i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
215
216 // This code would benefit from a backport from the GLSL version!
217 if (x0 >= y0) {
218 if (y0 >= z0) {
219 i1 = 1;
220 j1 = 0;
221 k1 = 0;
222 i2 = 1;
223 j2 = 1;
224 k2 = 0; // X Y Z order
225 } else if (x0 >= z0) {
226 i1 = 1;
227 j1 = 0;
228 k1 = 0;
229 i2 = 1;
230 j2 = 0;
231 k2 = 1; // X Z Y order
232 } else {
233 i1 = 0;
234 j1 = 0;
235 k1 = 1;
236 i2 = 1;
237 j2 = 0;
238 k2 = 1; // Z X Y order
239 }
240 } else { // x0<y0
241 if (y0 < z0) {
242 i1 = 0;
243 j1 = 0;
244 k1 = 1;
245 i2 = 0;
246 j2 = 1;
247 k2 = 1; // Z Y X order
248 } else if (x0 < z0) {
249 i1 = 0;
250 j1 = 1;
251 k1 = 0;
252 i2 = 0;
253 j2 = 1;
254 k2 = 1; // Y Z X order
255 } else {
256 i1 = 0;
257 j1 = 1;
258 k1 = 0;
259 i2 = 1;
260 j2 = 1;
261 k2 = 0; // Y X Z order
262 }
263 }
264
265 // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
266 // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
267 // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
268 // c = 1/6.
269
270 int32_t x1 = x0 - ((int32_t)i1<<14) + ((int32_t)(G3>>18)); // .14: Offsets for second corner in (x,y,z) coords
271 int32_t y1 = y0 - ((int32_t)j1<<14) + ((int32_t)(G3>>18)); // .14
272 int32_t z1 = z0 - ((int32_t)k1<<14) + ((int32_t)(G3>>18)); // .14
273 int32_t x2 = x0 - ((int32_t)i2<<14) + ((int32_t)(2*G3)>>18); // .14: Offsets for third corner in (x,y,z) coords
274 int32_t y2 = y0 - ((int32_t)j2<<14) + ((int32_t)(2*G3)>>18); // .14
275 int32_t z2 = z0 - ((int32_t)k2<<14) + ((int32_t)(2*G3)>>18); // .14
276 int32_t x3 = x0 - (1 << 14) + (int32_t)((3*G3)>>18); // .14: Offsets for last corner in (x,y,z) coords
277 int32_t y3 = y0 - (1 << 14) + (int32_t)((3*G3)>>18); // .14
278 int32_t z3 = z0 - (1 << 14) + (int32_t)((3*G3)>>18); // .14
279
280 // Calculate the contribution from the four corners
281 int32_t n0 = 0, n1 = 0, n2 = 0, n3 = 0; // .30
282 const int32_t fix0_6 = 161061274; // .28: 0.6
283
284 int32_t t0 = (fix0_6 - x0*x0 - y0*y0 - z0*z0) >> 12; // .16
285 if (t0 > 0) {
286 t0 = (t0 * t0) >> 16; // .16
287 t0 = (t0 * t0) >> 16; // .16
288 // .16 * .14 = .30
289 n0 = t0 * grad(P((i+(uint32_t)P((j+(uint32_t)P(k&0xff))&0xff))&0xff), x0, y0, z0);
290 }
291
292 int32_t t1 = (fix0_6 - x1*x1 - y1*y1 - z1*z1) >> 12; // .16
293 if (t1 > 0) {
294 t1 = (t1 * t1) >> 16; // .16
295 t1 = (t1 * t1) >> 16; // .16
296 // .16 * .14 = .30
297 n1 = t1 * grad(P((i+i1+(uint32_t)P((j+j1+(uint32_t)P((k+k1)&0xff))&0xff))&0xff), x1, y1, z1);
298 }
299
300 int32_t t2 = (fix0_6 - x2*x2 - y2*y2 - z2*z2) >> 12; // .16
301 if (t2 > 0) {
302 t2 = (t2 * t2) >> 16; // .16
303 t2 = (t2 * t2) >> 16; // .16
304 // .16 * .14 = .30
305 n2 = t2 * grad(P((i+i2+(uint32_t)P((j+j2+(uint32_t)P((k+k2)&0xff))&0xff))&0xff), x2, y2, z2);
306 }
307
308 int32_t t3 = (fix0_6 - x3*x3 - y3*y3 - z3*z3) >> 12; // .16
309 if (t3 > 0) {
310 t3 = (t3 * t3) >> 16; // .16
311 t3 = (t3 * t3) >> 16; // .16
312 // .16 * .14 = .30
313 n3 = t3 * grad(P((i+1+(uint32_t)P((j+1+(uint32_t)P((k+1)&0xff))&0xff))&0xff), x3, y3, z3);
314 }
315
316 // Add contributions from each corner to get the final noise value.
317 // The result is scaled to stay just inside [-1,1]
318 int32_t n = n0 + n1 + n2 + n3; // .30
319 n = ((n >> 8) * 16748) >> 16 ; // fix scale to fit exactly in an int16
320 return (uint16_t)n + 0x8000;
321}
322
323// 4D simplex noise.
324uint16_t snoise16(uint32_t x, uint32_t y, uint32_t z, uint32_t w) {
325 // The skewing and unskewing factors are hairy again for the 4D case
326 const uint64_t F4 = 331804471; // .30: (Math.sqrt(5.0)-1.0)/4.0 = 0.30901699437494745
327 const uint64_t G4 = 593549882; // .32: (5.0-Math.sqrt(5.0))/20.0 = 0.1381966011250105
328
329 // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're
330 // in.
331 uint32_t s = (((uint64_t)x + (uint64_t)y + (uint64_t)z + (uint64_t)w) * F4) >> 32; // .12 + .30 = .10: Factor for 4D skewing.
332 uint32_t i = ((x>>2) + s) >> 10; // .0
333 uint32_t j = ((y>>2) + s) >> 10; // .0
334 uint32_t k = ((z>>2) + s) >> 10; // .0
335 uint32_t l = ((w>>2) + s) >> 10; // .0
336
337 uint64_t t = (((uint64_t)i + (uint64_t)j + (uint64_t)k + (uint64_t)l) * G4) >> 18; // .14
338 uint64_t X0 = ((uint64_t)i<<14) - t; // .14: Unskew the cell origin back to (x,y,z,w) space
339 uint64_t Y0 = ((uint64_t)j<<14) - t; // .14
340 uint64_t Z0 = ((uint64_t)k<<14) - t; // .14
341 uint64_t W0 = ((uint64_t)l<<14) - t; // .14
342 int32_t x0 = ((uint64_t)x<<2) - X0; // .14: The x,y,z,w distances from the cell origin
343 int32_t y0 = ((uint64_t)y<<2) - Y0; // .14
344 int32_t z0 = ((uint64_t)z<<2) - Z0; // .14
345 int32_t w0 = ((uint64_t)w<<2) - W0; // .14
346
347 // For the 4D case, the simplex is a 4D shape I won't even try to describe.
348 // To find out which of the 24 possible simplices we're in, we need to
349 // determine the magnitude ordering of x0, y0, z0 and w0.
350 // The method below is a good way of finding the ordering of x,y,z,w and
351 // then find the correct traversal order for the simplex we’re in.
352 // First, six pair-wise comparisons are performed between each possible pair
353 // of the four coordinates, and the results are used to add up binary bits
354 // for an integer index.
355 int c = 0;
356 if (x0 > y0) {
357 c += 32;
358 }
359 if (x0 > z0) {
360 c += 16;
361 }
362 if (y0 > z0) {
363 c += 8;
364 }
365 if (x0 > w0) {
366 c += 4;
367 }
368 if (y0 > w0) {
369 c += 2;
370 }
371 if (z0 > w0) {
372 c += 1;
373 }
374
375 // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
376 // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
377 // impossible. Only the 24 indices which have non-zero entries make any sense.
378 // We use a thresholding to set the coordinates in turn from the largest magnitude.
379 // The number 3 in the "simplex" array is at the position of the largest coordinate.
380 // The integer offsets for the second simplex corner
381 uint32_t i1 = simplex[c][0] >= 3 ? 1 : 0;
382 uint32_t j1 = simplex[c][1] >= 3 ? 1 : 0;
383 uint32_t k1 = simplex[c][2] >= 3 ? 1 : 0;
384 uint32_t l1 = simplex[c][3] >= 3 ? 1 : 0;
385 // The number 2 in the "simplex" array is at the second largest coordinate.
386 // The integer offsets for the third simplex corner
387 uint32_t i2 = simplex[c][0] >= 2 ? 1 : 0;
388 uint32_t j2 = simplex[c][1] >= 2 ? 1 : 0;
389 uint32_t k2 = simplex[c][2] >= 2 ? 1 : 0;
390 uint32_t l2 = simplex[c][3] >= 2 ? 1 : 0;
391 // The number 1 in the "simplex" array is at the second smallest coordinate.
392 // The integer offsets for the fourth simplex corner
393 uint32_t i3 = simplex[c][0] >= 1 ? 1 : 0;
394 uint32_t j3 = simplex[c][1] >= 1 ? 1 : 0;
395 uint32_t k3 = simplex[c][2] >= 1 ? 1 : 0;
396 uint32_t l3 = simplex[c][3] >= 1 ? 1 : 0;
397 // The fifth corner has all coordinate offsets = 1, so no need to look that up.
398
399 int32_t x1 = x0 - ((int32_t)i1<<14) + (int32_t)(G4>>18); // .14: Offsets for second corner in (x,y,z,w) coords
400 int32_t y1 = y0 - ((int32_t)j1<<14) + (int32_t)(G4>>18);
401 int32_t z1 = z0 - ((int32_t)k1<<14) + (int32_t)(G4>>18);
402 int32_t w1 = w0 - ((int32_t)l1<<14) + (int32_t)(G4>>18);
403 int32_t x2 = x0 - ((int32_t)i2<<14) + (int32_t)(2*G4>>18); // .14: Offsets for third corner in (x,y,z,w) coords
404 int32_t y2 = y0 - ((int32_t)j2<<14) + (int32_t)(2*G4>>18);
405 int32_t z2 = z0 - ((int32_t)k2<<14) + (int32_t)(2*G4>>18);
406 int32_t w2 = w0 - ((int32_t)l2<<14) + (int32_t)(2*G4>>18);
407 int32_t x3 = x0 - ((int32_t)i3<<14) + (int32_t)(3*G4>>18); // .14: Offsets for fourth corner in (x,y,z,w) coords
408 int32_t y3 = y0 - ((int32_t)j3<<14) + (int32_t)(3*G4>>18);
409 int32_t z3 = z0 - ((int32_t)k3<<14) + (int32_t)(3*G4>>18);
410 int32_t w3 = w0 - ((int32_t)l3<<14) + (int32_t)(3*G4>>18);
411 int32_t x4 = x0 - (1 << 14) + (int32_t)(4*G4>>18); // .14: Offsets for last corner in (x,y,z,w) coords
412 int32_t y4 = y0 - (1 << 14) + (int32_t)(4*G4>>18);
413 int32_t z4 = z0 - (1 << 14) + (int32_t)(4*G4>>18);
414 int32_t w4 = w0 - (1 << 14) + (int32_t)(4*G4>>18);
415
416 int32_t n0 = 0, n1 = 0, n2 = 0, n3 = 0, n4 = 0; // Noise contributions from the five corners
417 const int32_t fix0_6 = 161061274; // .28: 0.6
418
419 // Calculate the contribution from the five corners
420 int32_t t0 = (fix0_6 - x0*x0 - y0*y0 - z0*z0 - w0*w0) >> 12; // .16
421 if (t0 > 0) {
422 t0 = (t0 * t0) >> 16;
423 t0 = (t0 * t0) >> 16;
424 // .16 * .14 = .30
425 n0 = t0 * grad(P((i+(uint32_t)(P((j+(uint32_t)(P((k+(uint32_t)(P(l&0xff)))&0xff)))&0xff)))&0xff), x0, y0, z0, w0);
426 }
427
428 int32_t t1 = (fix0_6 - x1*x1 - y1*y1 - z1*z1 - w1*w1) >> 12; // .16
429 if (t1 > 0) {
430 t1 = (t1 * t1) >> 16;
431 t1 = (t1 * t1) >> 16;
432 // .16 * .14 = .30
433 n1 = t1 * grad(P((i+i1+(uint32_t)(P((j+j1+(uint32_t)(P((k+k1+(uint32_t)(P((l+l1)&0xff)))&0xff)))&0xff)))&0xff), x1, y1, z1, w1);
434 }
435
436 int32_t t2 = (fix0_6 - x2*x2 - y2*y2 - z2*z2 - w2*w2) >> 12; // .16
437 if (t2 > 0) {
438 t2 = (t2 * t2) >> 16;
439 t2 = (t2 * t2) >> 16;
440 // .16 * .14 = .30
441 n2 = t2 * grad(P((i+i2+(uint32_t)(P((j+j2+(uint32_t)(P((k+k2+(uint32_t)(P((l+l2)&0xff)))&0xff)))&0xff)))&0xff), x2, y2, z2, w2);
442 }
443
444 int32_t t3 = (fix0_6 - x3*x3 - y3*y3 - z3*z3 - w3*w3) >> 12; // .16
445 if (t3 > 0) {
446 t3 = (t3 * t3) >> 16;
447 t3 = (t3 * t3) >> 16;
448 // .16 * .14 = .30
449 n3 = t3 * grad(P((i+i3+(uint32_t)(P((j+j3+(uint32_t)(P((k+k3+(uint32_t)(P((l+l3)&0xff)))&0xff)))&0xff)))&0xff), x3, y3, z3, w3);
450 }
451
452 int32_t t4 = (fix0_6 - x4*x4 - y4*y4 - z4*z4 - w4*w4) >> 12; // .16
453 if (t4 > 0) {
454 t4 = (t4 * t4) >> 16;
455 t4 = (t4 * t4) >> 16;
456 // .16 * .14 = .30
457 n4 = t4 * grad(P((i+1+(uint32_t)(P((j+1+(uint32_t)(P((k+1+(uint32_t)(P((l+1)&0xff)))&0xff)))&0xff)))&0xff), x4, y4, z4, w4);
458 }
459
460 int32_t n = n0 + n1 + n2 + n3 + n4; // .30
461 n = ((n >> 8) * 13832) >> 16; // fix scale
462 return uint16_t(n) + 0x8000;
463}
464
central include file for FastLED, defines the CFastLED class/object
@ W0
White is first.
Definition eorder.h:28
#define FL_PROGMEM
PROGMEM keyword for storage.
uint16_t snoise16(uint32_t x)
32 bit, fixed point implementation of simplex noise functions.
Definition simplex.cpp:102
#define FASTLED_NAMESPACE_END
End of the FastLED namespace.
Definition namespace.h:16
#define FASTLED_NAMESPACE_BEGIN
Start of the FastLED namespace.
Definition namespace.h:14
#define P(x)
Reads a single byte from the p array.
Definition noise.cpp:42