FastLED 3.9.15
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
NoisePlusPalette.ino
#include <FastLED.h> // Main FastLED library for controlling LEDs
#ifdef __AVR__
// Don't compile this for AVR microcontrollers (like Arduino Uno) because they typically
// don't have enough memory to handle this complex animation.
// Instead, we provide empty setup/loop functions so the sketch will compile but do nothing.
void setup() {}
void loop() {}
#else // For all other platforms with more memory (ESP32, Teensy, etc.)
// LED hardware configuration
#define LED_PIN 3 // Data pin connected to the LED strip
#define BRIGHTNESS 96 // Default brightness level (0-255)
#define LED_TYPE WS2811 // Type of LED strip being used
#define COLOR_ORDER GRB // Color order of the LEDs (varies by strip type)
// Matrix dimensions - defines the size of our virtual LED grid
const uint8_t kMatrixWidth = 16; // Number of columns in the matrix
const uint8_t kMatrixHeight = 16; // Number of rows in the matrix
// LED strip layout configuration
const bool kMatrixSerpentineLayout = true; // If true, every other row runs backwards
// This is common in matrix setups to allow
// for easier wiring
// HOW THIS EXAMPLE WORKS:
//
// This example combines two features of FastLED to produce a remarkable range of
// effects from a relatively small amount of code. This example combines FastLED's
// color palette lookup functions with FastLED's Perlin noise generator, and
// the combination is extremely powerful.
//
// You might want to look at the "ColorPalette" and "Noise" examples separately
// if this example code seems daunting.
//
//
// The basic setup here is that for each frame, we generate a new array of
// 'noise' data, and then map it onto the LED matrix through a color palette.
//
// Periodically, the color palette is changed, and new noise-generation parameters
// are chosen at the same time. In this example, specific noise-generation
// values have been selected to match the given color palettes; some are faster,
// or slower, or larger, or smaller than others, but there's no reason these
// parameters can't be freely mixed-and-matched.
//
// In addition, this example includes some fast automatic 'data smoothing' at
// lower noise speeds to help produce smoother animations in those cases.
//
// The FastLED built-in color palettes (Forest, Clouds, Lava, Ocean, Party) are
// used, as well as some 'hand-defined' ones, and some procedurally generated
// palettes.
// Calculate the total number of LEDs in our matrix
#define NUM_LEDS (kMatrixWidth * kMatrixHeight)
// Find the larger dimension (width or height) for our noise array size
#define MAX_DIMENSION ((kMatrixWidth>kMatrixHeight) ? kMatrixWidth : kMatrixHeight)
// Array to hold all LED color values - one CRGB struct per LED
// The 16-bit version of our coordinates for the noise function
// Using 16 bits gives us more resolution and smoother animations
static uint16_t x; // x-coordinate in the noise space
static uint16_t y; // y-coordinate in the noise space
static uint16_t z; // z-coordinate (time dimension) in the noise space
// ANIMATION PARAMETERS:
// We're using the x/y dimensions to map to the x/y pixels on the matrix. We'll
// use the z-axis for "time". speed determines how fast time moves forward. Try
// 1 for a very slow moving effect, or 60 for something that ends up looking like
// water.
uint16_t speed = 20; // Speed is set dynamically once we've started up
// Higher values = faster animation
// Scale determines how far apart the pixels in our noise matrix are. Try
// changing these values around to see how it affects the motion of the display. The
// higher the value of scale, the more "zoomed out" the noise will be. A value
// of 1 will be so zoomed in, you'll mostly see solid colors.
uint16_t scale = 30; // Scale is set dynamically once we've started up
// Higher values = more "zoomed out" pattern
// This is the array that we keep our computed noise values in
// Each position stores an 8-bit (0-255) noise value
// The current color palette we're using to map noise values to colors
CRGBPalette16 currentPalette( PartyColors_p ); // Start with party colors
// If colorLoop is set to 1, we'll cycle through the colors in the palette
// This creates an additional animation effect on top of the noise movement
uint8_t colorLoop = 1; // 0 = no color cycling, 1 = cycle colors
// Forward declare our functions so that we have maximum compatibility
// with other build tools outside of ArduinoIDE. The *.ino files are
// special in that Arduino will generate function prototypes for you.
// For non-Arduino environments, we need these declarations.
void SetupRandomPalette(); // Creates a random color palette
void SetupPurpleAndGreenPalette(); // Creates a purple and green striped palette
void SetupBlackAndWhiteStripedPalette(); // Creates a black and white striped palette
void ChangePaletteAndSettingsPeriodically(); // Changes palettes and settings over time
void mapNoiseToLEDsUsingPalette(); // Maps noise data to LED colors using the palette
uint16_t XY( uint8_t x, uint8_t y); // Converts x,y coordinates to LED array index
void setup() {
delay(3000); // 3 second delay for recovery and to give time for the serial monitor to open
// Initialize the LED strip:
// - LED_TYPE specifies the chipset (WS2811, WS2812B, etc.)
// - LED_PIN is the data pin number
// - COLOR_ORDER specifies the RGB color ordering for your strip
// NOTE - This does NOT have a ScreenMap (because it's a legacy sketch)
// so it won't look that good on the web-compiler. But adding it is ONE LINE!
// Set the overall brightness level (0-255)
FastLED.setBrightness(BRIGHTNESS);
// Initialize our noise coordinates to random values
// This ensures the pattern starts from a different position each time
x = random16(); // Random x starting position
y = random16(); // Random y starting position
z = random16(); // Random time starting position
}
// Fill the x/y array of 8-bit noise values using the inoise8 function.
void fillnoise8() {
// If we're running at a low "speed", some 8-bit artifacts become visible
// from frame-to-frame. In order to reduce this, we can do some fast data-smoothing.
// The amount of data smoothing we're doing depends on "speed".
uint8_t dataSmoothing = 0;
if( speed < 50) {
// At lower speeds, apply more smoothing
// This formula creates more smoothing at lower speeds:
// speed=10 → smoothing=160, speed=30 → smoothing=80
dataSmoothing = 200 - (speed * 4);
}
// Loop through each pixel in our noise array
for(int i = 0; i < MAX_DIMENSION; i++) {
// Calculate the offset for this pixel in the x dimension
int ioffset = scale * i;
for(int j = 0; j < MAX_DIMENSION; j++) {
// Calculate the offset for this pixel in the y dimension
int joffset = scale * j;
// Generate the noise value for this pixel using 3D Perlin noise
// The noise function takes x, y, and z (time) coordinates
uint8_t data = inoise8(x + ioffset, y + joffset, z);
// The range of the inoise8 function is roughly 16-238.
// These two operations expand those values out to roughly 0..255
// You can comment them out if you want the raw noise data.
data = qsub8(data, 16); // Subtract 16 (with underflow protection)
data = qadd8(data, scale8(data, 39)); // Add a scaled version of the data to itself
// Apply data smoothing if enabled
if( dataSmoothing ) {
uint8_t olddata = noise[i][j]; // Get the previous frame's value
// Blend between old and new data based on smoothing amount
// Higher dataSmoothing = more of the old value is kept
uint8_t newdata = scale8(olddata, dataSmoothing) +
scale8(data, 256 - dataSmoothing);
data = newdata;
}
// Store the final noise value in our array
noise[i][j] = data;
}
}
// Increment z to move through the noise space over time
z += speed;
// Apply slow drift to X and Y, just for visual variation
// This creates a gentle shifting of the entire pattern
x += speed / 8; // X drifts at 1/8 the speed of z
y -= speed / 16; // Y drifts at 1/16 the speed of z in the opposite direction
}
// Map the noise data to LED colors using the current color palette
{
// Static variable that slowly increases to cycle through colors when colorLoop is enabled
static uint8_t ihue=0;
// Loop through each pixel in our LED matrix
for(int i = 0; i < kMatrixWidth; i++) {
for(int j = 0; j < kMatrixHeight; j++) {
// We use the value at the (i,j) coordinate in the noise
// array for our brightness, and the flipped value from (j,i)
// for our pixel's index into the color palette.
// This creates interesting patterns with two different noise mappings.
uint8_t index = noise[j][i]; // Color index from the flipped coordinate
uint8_t bri = noise[i][j]; // Brightness from the normal coordinate
// If color cycling is enabled, add a slowly-changing base value to the index
// This makes the colors shift/rotate through the palette over time
if( colorLoop) {
index += ihue; // Add the slowly increasing hue offset
}
// Brighten up the colors, as the color palette itself often contains the
// light/dark dynamic range desired
if( bri > 127 ) {
// If brightness is in the upper half, make it full brightness
bri = 255;
} else {
// Otherwise, scale it to the full range (0-127 becomes 0-254)
bri = dim8_raw( bri * 2);
}
// Get the final color by looking up the palette color at our index
// and applying the brightness value
CRGB color = ColorFromPalette( currentPalette, index, bri);
// Set the LED color in our array, using the XY mapping function
// to convert from x,y coordinates to the 1D array index
leds[XY(i,j)] = color;
}
}
// Increment the hue value for the next frame (for color cycling)
ihue+=1;
}
void loop() {
// The main program loop that runs continuously
// Periodically choose a new palette, speed, and scale
// This creates variety in the animation over time
// Generate new noise data for this frame
// Convert the noise data to colors in the LED array
// using the current palette
// Send the color data to the actual LEDs
FastLED.show();
// No delay is needed here as the calculations already take some time
// Adding a delay would slow down the animation
// delay(10);
}
// PALETTE MANAGEMENT:
//
// There are several different palettes of colors demonstrated here.
//
// FastLED provides several 'preset' palettes: RainbowColors_p, RainbowStripeColors_p,
// OceanColors_p, CloudColors_p, LavaColors_p, ForestColors_p, and PartyColors_p.
//
// Additionally, you can manually define your own color palettes, or you can write
// code that creates color palettes on the fly.
// This controls how long each palette is displayed before changing
// 1 = 5 sec per palette
// 2 = 10 sec per palette
// etc.
#define HOLD_PALETTES_X_TIMES_AS_LONG 1 // Multiplier for palette duration
// Periodically change the palette, speed, and scale settings
{
// Calculate which "second hand" we're on (0-59) based on elapsed time
// We divide by HOLD_PALETTES_X_TIMES_AS_LONG to slow down the changes
uint8_t secondHand = ((millis() / 1000) / HOLD_PALETTES_X_TIMES_AS_LONG) % 60;
static uint8_t lastSecond = 99; // Track the last second to detect changes
// Only update when the second hand changes
if( lastSecond != secondHand) {
lastSecond = secondHand;
// Every 5 seconds, change to a different palette and settings
// Each palette has specific speed and scale settings that work well with it
if( secondHand == 0) { currentPalette = RainbowColors_p; speed = 20; scale = 30; colorLoop = 1; }
if( secondHand == 5) { SetupPurpleAndGreenPalette(); speed = 10; scale = 50; colorLoop = 1; }
if( secondHand == 10) { SetupBlackAndWhiteStripedPalette(); speed = 20; scale = 30; colorLoop = 1; }
if( secondHand == 15) { currentPalette = ForestColors_p; speed = 8; scale =120; colorLoop = 0; }
if( secondHand == 20) { currentPalette = CloudColors_p; speed = 4; scale = 30; colorLoop = 0; }
if( secondHand == 25) { currentPalette = LavaColors_p; speed = 8; scale = 50; colorLoop = 0; }
if( secondHand == 30) { currentPalette = OceanColors_p; speed = 20; scale = 90; colorLoop = 0; }
if( secondHand == 35) { currentPalette = PartyColors_p; speed = 20; scale = 30; colorLoop = 1; }
if( secondHand == 40) { SetupRandomPalette(); speed = 20; scale = 20; colorLoop = 1; }
if( secondHand == 45) { SetupRandomPalette(); speed = 50; scale = 50; colorLoop = 1; }
if( secondHand == 50) { SetupRandomPalette(); speed = 90; scale = 90; colorLoop = 1; }
if( secondHand == 55) { currentPalette = RainbowStripeColors_p; speed = 30; scale = 20; colorLoop = 1; }
}
}
// This function generates a random palette that's a gradient
// between four different colors. The first is a dim hue, the second is
// a bright hue, the third is a bright pastel, and the last is
// another bright hue. This gives some visual bright/dark variation
// which is more interesting than just a gradient of different hues.
{
// Create a new palette with 4 random colors that blend together
currentPalette = CRGBPalette16(
CHSV( random8(), 255, 32), // Random dim hue (low value)
CHSV( random8(), 255, 255), // Random bright hue (full saturation & value)
CHSV( random8(), 128, 255), // Random pastel (medium saturation, full value)
CHSV( random8(), 255, 255)); // Another random bright hue
// The CRGBPalette16 constructor automatically creates a 16-color gradient
// between these four colors, evenly distributed
}
// This function sets up a palette of black and white stripes,
// using code. Since the palette is effectively an array of
// sixteen CRGB colors, the various fill_* functions can be used
// to set them up.
{
// 'black out' all 16 palette entries...
// and set every fourth one to white to create stripes
// Positions 0, 4, 8, and 12 in the 16-color palette
// The palette interpolation will create smooth transitions between these colors
}
// This function sets up a palette of purple and green stripes.
{
// Define our colors using HSV color space for consistency
CRGB purple = CHSV( HUE_PURPLE, 255, 255); // Bright purple
CRGB green = CHSV( HUE_GREEN, 255, 255); // Bright green
CRGB black = CRGB::Black; // Black
// Create a 16-color palette with a specific pattern:
// green-green-black-black-purple-purple-black-black, repeated twice
// This creates alternating green and purple stripes with black in between
currentPalette = CRGBPalette16(
green, green, black, black, // First 4 colors
purple, purple, black, black, // Next 4 colors
green, green, black, black, // Repeat the pattern
purple, purple, black, black ); // Last 4 colors
}
//
// Mark's xy coordinate mapping code. See the XYMatrix for more information on it.
//
// This function converts x,y coordinates to a single array index
// It handles both regular and serpentine matrix layouts
uint16_t XY( uint8_t x, uint8_t y)
{
uint16_t i;
// For a regular/sequential layout, it's just y * width + x
if( kMatrixSerpentineLayout == false) {
i = (y * kMatrixWidth) + x;
}
// For a serpentine layout (zigzag), odd rows run backwards
if( kMatrixSerpentineLayout == true) {
if( y & 0x01) { // Check if y is odd (bitwise AND with 1)
// Odd rows run backwards
uint8_t reverseX = (kMatrixWidth - 1) - x;
i = (y * kMatrixWidth) + reverseX;
} else {
// Even rows run forwards
i = (y * kMatrixWidth) + x;
}
}
return i;
}
#endif // End of the non-AVR code section
void setup()
void loop()
CRGB leds[NUM_LEDS]
Definition Apa102.ino:11
#define NUM_LEDS
Definition Apa102.ino:6
int y
Definition Audio.ino:72
int x
Definition Audio.ino:71
UISlider speed("Speed", 1.0f, -20.0f, 20.0f, 0.01f)
UISlider scale("Scale", 1.0f, 0.0f, 1.0f, 0.01f)
#define BRIGHTNESS
Definition Blur.ino:8
#define COLOR_ORDER
#define LED_TYPE
#define LED_PIN
CRGBPalette16 currentPalette
void SetupPurpleAndGreenPalette()
void SetupBlackAndWhiteStripedPalette()
CFastLED FastLED
Global LED strip management instance.
central include file for FastLED, defines the CFastLED class/object
uint8_t noise[NUM_LAYERS][WIDTH][HEIGHT]
Definition Fire2023.ino:88
uint32_t z[NUM_LAYERS]
Definition Fire2023.ino:84
uint8_t XY(uint8_t x, uint8_t y)
Definition Fire2023.ino:210
#define kMatrixSerpentineLayout
void mapNoiseToLEDsUsingPalette()
void ChangePaletteAndSettingsPeriodically()
uint8_t colorLoop
#define HOLD_PALETTES_X_TIMES_AS_LONG
void SetupRandomPalette()
#define kMatrixHeight
#define kMatrixWidth
CRGB ColorFromPalette(const CRGBPalette16 &pal, uint8_t index, uint8_t brightness, TBlendType blendType)
void fill_solid(struct CRGB *targetArray, int numToFill, const struct CRGB &color)
Fill a range of LEDs with a solid color.
Definition fill.cpp:9
void fillnoise8()
Definition funky.cpp:1000
#define MAX_DIMENSION
Definition funky.cpp:87
LIB8STATIC uint8_t dim8_raw(uint8_t x)
Adjust a scaling value for dimming.
Definition scale8.h:709
LIB8STATIC_ALWAYS_INLINE uint8_t qadd8(uint8_t i, uint8_t j)
Add one byte to another, saturating at 0xFF.
Definition math8.h:31
LIB8STATIC_ALWAYS_INLINE uint8_t qsub8(uint8_t i, uint8_t j)
Subtract one byte from another, saturating at 0x00.
Definition math8.h:103
uint8_t inoise8(uint16_t x, uint16_t y, uint16_t z)
8-Bit, fixed point implementation of Perlin's noise.
Definition noise.cpp:590
@ HUE_PURPLE
Purple (270°)
Definition chsv.h:104
@ HUE_GREEN
Green (135°)
Definition chsv.h:101
const TProgmemRGBPalette16 RainbowStripeColors_p
HSV Rainbow colors with alternatating stripes of black.
const TProgmemRGBPalette16 OceanColors_p
Ocean colors, blues and whites.
const TProgmemRGBPalette16 CloudColors_p
Cloudy color palette.
const TProgmemRGBPalette16 ForestColors_p
Forest colors, greens.
const TProgmemRGBPalette16 LavaColors_p
Lava color palette.
const TProgmemRGBPalette16 PartyColors_p
HSV color ramp: blue, purple, pink, red, orange, yellow (and back).
const TProgmemRGBPalette16 RainbowColors_p
HSV Rainbow.
LIB8STATIC uint16_t random16()
Generate a 16-bit random number.
Definition random8.h:56
LIB8STATIC uint8_t random8()
Generate an 8-bit random number.
Definition random8.h:46
LIB8STATIC_ALWAYS_INLINE uint8_t scale8(uint8_t i, fract8 scale)
Scale one byte by a second one, which is treated as the numerator of a fraction whose denominator is ...
Definition scale8.h:40
Representation of an HSV pixel (hue, saturation, value (aka brightness)).
Definition chsv.h:16
@ White
<div style='background:#FFFFFF;width:4em;height:4em;'></div>
Definition crgb.h:640
@ Black
<div style='background:#000000;width:4em;height:4em;'></div>
Definition crgb.h:504
Representation of an RGB pixel (Red, Green, Blue)
Definition crgb.h:55