15 uint16_t dx, uint16_t dy);
18 uint8_t v11, uint8_t dx, uint8_t dy);
22 uint16_t n =
xyMap.getTotal();
23 uint16_t outputWidth =
xyMap.getWidth();
24 uint16_t outputHeight =
xyMap.getHeight();
25 const uint16_t scale_factor = 256;
27 for (uint16_t
y = 0;
y < outputHeight;
y++) {
28 for (uint16_t
x = 0;
x < outputWidth;
x++) {
30 uint32_t fx = ((uint32_t)
x * (inputWidth - 1) * scale_factor) /
32 uint32_t fy = ((uint32_t)
y * (inputHeight - 1) * scale_factor) /
35 uint16_t ix = fx / scale_factor;
36 uint16_t iy = fy / scale_factor;
37 uint16_t dx = fx % scale_factor;
38 uint16_t dy = fy % scale_factor;
40 uint16_t ix1 = (ix + 1 < inputWidth) ? ix + 1 : ix;
41 uint16_t iy1 = (iy + 1 < inputHeight) ? iy + 1 : iy;
43 uint16_t i00 = iy * inputWidth + ix;
44 uint16_t i10 = iy * inputWidth + ix1;
45 uint16_t i01 = iy1 * inputWidth + ix;
46 uint16_t i11 = iy1 * inputWidth + ix1;
48 CRGB c00 = input[i00];
49 CRGB c10 = input[i10];
50 CRGB c01 = input[i01];
51 CRGB c11 = input[i11];
58 uint16_t idx =
xyMap.mapToIndex(
x,
y);
66 uint16_t dx, uint16_t dy) {
67 uint16_t dx_inv = 256 - dx;
68 uint16_t dy_inv = 256 - dy;
70 uint32_t w00 = (uint32_t)dx_inv * dy_inv;
71 uint32_t w10 = (uint32_t)dx * dy_inv;
72 uint32_t w01 = (uint32_t)dx_inv * dy;
73 uint32_t w11 = (uint32_t)dx * dy;
75 uint32_t sum = v00 * w00 + v10 * w10 + v01 * w01 + v11 * w11;
79 uint8_t result = (uint8_t)((sum + 32768) >> 16);
86 uint8_t width =
xyMap.getWidth();
87 uint8_t height =
xyMap.getHeight();
88 if (width !=
xyMap.getWidth() || height !=
xyMap.getHeight()) {
92 uint16_t n =
xyMap.getTotal();
94 for (uint8_t
y = 0;
y < height;
y++) {
95 for (uint8_t
x = 0;
x < width;
x++) {
98 uint16_t fx = ((uint16_t)
x * (inputWidth - 1) * 256) / (width - 1);
100 ((uint16_t)
y * (inputHeight - 1) * 256) / (height - 1);
102 uint8_t ix = fx >> 8;
103 uint8_t iy = fy >> 8;
104 uint8_t dx = fx & 0xFF;
105 uint8_t dy = fy & 0xFF;
107 uint8_t ix1 = (ix + 1 < inputWidth) ? ix + 1 : ix;
108 uint8_t iy1 = (iy + 1 < inputHeight) ? iy + 1 : iy;
110 uint16_t i00 = iy * inputWidth + ix;
111 uint16_t i10 = iy * inputWidth + ix1;
112 uint16_t i01 = iy1 * inputWidth + ix;
113 uint16_t i11 = iy1 * inputWidth + ix1;
115 CRGB c00 = input[i00];
116 CRGB c10 = input[i10];
117 CRGB c01 = input[i01];
118 CRGB c11 = input[i11];
128 uint16_t idx =
xyMap.mapToIndex(
x,
y);
130 output[idx] = result;
137 uint8_t v11, uint8_t dx, uint8_t dy) {
138 uint16_t dx_inv = 256 - dx;
139 uint16_t dy_inv = 256 - dy;
142 uint16_t w00 = (dx_inv * dy_inv) >> 8;
143 uint16_t w10 = (dx * dy_inv) >> 8;
144 uint16_t w01 = (dx_inv * dy) >> 8;
145 uint16_t w11 = (dx * dy) >> 8;
148 uint16_t weight_sum = w00 + w10 + w01 + w11;
151 uint16_t sum = v00 * w00 + v10 * w10 + v01 * w01 + v11 * w11;
154 uint8_t result = (sum + (weight_sum >> 1)) / weight_sum;
161 uint8_t v11,
float dx,
float dy) {
162 float dx_inv = 1.0f - dx;
163 float dy_inv = 1.0f - dy;
166 float w00 = dx_inv * dy_inv;
167 float w10 = dx * dy_inv;
168 float w01 = dx_inv * dy;
172 float sum = v00 * w00 + v10 * w10 + v01 * w01 + v11 * w11;
175 uint8_t result =
static_cast<uint8_t
>(sum + 0.5f);
183 uint16_t n =
xyMap.getTotal();
184 uint16_t outputWidth =
xyMap.getWidth();
185 uint16_t outputHeight =
xyMap.getHeight();
187 for (uint16_t
y = 0;
y < outputHeight;
y++) {
188 for (uint16_t
x = 0;
x < outputWidth;
x++) {
191 static_cast<float>(
x) * (inputWidth - 1) / (outputWidth - 1);
193 static_cast<float>(
y) * (inputHeight - 1) / (outputHeight - 1);
195 uint16_t ix =
static_cast<uint16_t
>(fx);
196 uint16_t iy =
static_cast<uint16_t
>(fy);
200 uint16_t ix1 = (ix + 1 < inputWidth) ? ix + 1 : ix;
201 uint16_t iy1 = (iy + 1 < inputHeight) ? iy + 1 : iy;
203 uint16_t i00 = iy * inputWidth + ix;
204 uint16_t i10 = iy * inputWidth + ix1;
205 uint16_t i01 = iy1 * inputWidth + ix;
206 uint16_t i11 = iy1 * inputWidth + ix1;
208 CRGB c00 = input[i00];
209 CRGB c10 = input[i10];
210 CRGB c01 = input[i01];
211 CRGB c11 = input[i11];
221 uint16_t idx =
xyMap.mapToIndex(
x,
y);
223 output[idx] = result;
232 uint8_t outputWidth =
xyMap.getWidth();
233 uint8_t outputHeight =
xyMap.getHeight();
234 if (outputWidth !=
xyMap.getWidth() || outputHeight !=
xyMap.getHeight()) {
238 uint16_t n =
xyMap.getTotal();
240 for (uint8_t
y = 0;
y < outputHeight;
y++) {
241 for (uint8_t
x = 0;
x < outputWidth;
x++) {
244 static_cast<float>(
x) * (inputWidth - 1) / (outputWidth - 1);
246 static_cast<float>(
y) * (inputHeight - 1) / (outputHeight - 1);
248 uint8_t ix =
static_cast<uint8_t
>(fx);
249 uint8_t iy =
static_cast<uint8_t
>(fy);
253 uint8_t ix1 = (ix + 1 < inputWidth) ? ix + 1 : ix;
254 uint8_t iy1 = (iy + 1 < inputHeight) ? iy + 1 : iy;
256 uint16_t i00 = iy * inputWidth + ix;
257 uint16_t i10 = iy * inputWidth + ix1;
258 uint16_t i01 = iy1 * inputWidth + ix;
259 uint16_t i11 = iy1 * inputWidth + ix1;
261 CRGB c00 = input[i00];
262 CRGB c10 = input[i10];
263 CRGB c01 = input[i01];
264 CRGB c11 = input[i11];
274 uint16_t idx =
xyMap.mapToIndex(
x,
y);
276 output[idx] = result;
Defines the red, green, and blue (RGB) pixel struct.
Implements the FastLED namespace macros.
void upscaleArbitrary(const CRGB *input, CRGB *output, uint16_t inputWidth, uint16_t inputHeight, XYMap xyMap)
Performs bilinear interpolation for upscaling an image.
uint8_t upscaleFloat(uint8_t v00, uint8_t v10, uint8_t v01, uint8_t v11, float dx, float dy)
uint8_t bilinearInterpolate(uint8_t v00, uint8_t v10, uint8_t v01, uint8_t v11, uint16_t dx, uint16_t dy)
uint8_t bilinearInterpolatePowerOf2(uint8_t v00, uint8_t v10, uint8_t v01, uint8_t v11, uint8_t dx, uint8_t dy)
void upscalePowerOf2(const CRGB *input, CRGB *output, uint8_t inputWidth, uint8_t inputHeight, XYMap xyMap)
Performs bilinear interpolation for upscaling an image.
void upscaleArbitraryFloat(const CRGB *input, CRGB *output, uint16_t inputWidth, uint16_t inputHeight, XYMap xyMap)
Implements a simple red square effect for 2D LED grids.
Representation of an RGB pixel (Red, Green, Blue)